The Pleistocene Great Smoky Mountains

April 23, 2017

I renewed my subscription to the Southeastern Naturalist, so I could read a recent monograph that inventoried the mammal fauna of the Great Smoky Mountains National Park.  According to this paper, 68 species of mammals have been documented in the park, and 1 scientist predicts an additional 4 species might eventually be found there.  I suspect this number is greatly exaggerated–many of the species are small animals not documented in the park since the initial survey when the park was established in the 1930’s.  Those species not documented recently could very well be extirpated from the park.  The flora of the Great Smoky Mountains National Park is impressive but don’t plan a trip and expect to see much wildlife.  I visited the park once and saw just 1 squirrel and no other mammals besides lots of people.  There are 24 species of insectivores and bats allegedly inhabiting the park.  These species are difficult to see and enjoy.  That leaves 44 species and of these only 5 are considered megafauna (animals weighing over 40 pounds). The “big 5” are white tailed deer, elk, black bear, wild boar, and coyote.  The latter 2 are considered invasive, but I think of the coyote as a native species that is recolonizing former territory occupied during the Pleistocene.

There are probably more white tailed deer outside the park in the surrounding farmland.  White tailed deer prefer forest edge habitat, and most of the park has succeeded to old growth.  Elk were re-introduced here in 2001, but they inhabit a small area of the park difficult to access.  The road leading to this spot is a dangerous single lane dirt path on the side of a mountain.  Supposedly, the black bear population in the park is about 1600.  During the summer black cherries (Prunus serotina) make up 25% of the bear’s diet.  Garbage provides 8% of their diet here.  The author of the below referenced monograph claims to have several photographs of cougars taken by park visitors circa 2003.  These may be of captive cougars released by owners who no longer wanted to care for them.  Cougars are normally secretive, and semi-tame cats may have been easier to photograph.  I doubt there is a breeding population of cougars in the park, but I wouldn’t rule it out, and they may eventually recolonize the region, if they keep expanding their range from the west and south Florida.

Image result for map of Great Smoky Mountains national park

Location of the Great Smoky Mountains Park.  The diversity of megafauna species in this park is much lower now than it was in this region during the Pleistocene.

Image result for black bear eating cherries

Strange as it may seem, wild black cherries make up to 25% of the black bear’s diet during mid to late summer in the Great Smoky Mountains National Park.

Image result for striped skunks in the Great Smoky Mountains National Park

The below referenced monograph reports a population of 30 striped skunks inhabit the Cades Cove Campground of the Great Smoky Mountains National Park.  They den in drainage culverts.  Avoid them or you will endure a stinky vacation.

Image result for Indiana bat

A fluctuating population of endangered Indiana bats roosts in a cave in Cades Cove.  Bats can be seen at dusk.

The variety and abundance of megafauna in the Great Smoky Mountains National Park is disappointing, but it was spectacular during the Pleistocene.  The natural communities then were similar to those of today, but during cold glacials there probably were more spruce trees and grassy balds and in higher elevations there may have even been tundra-like environments.  Here’s a list of large mammals (based on fossil evidence) that definitely inhabited the park region until ~11,000 BP or beyond.

Jefferson’s ground sloth

Harlan’s ground sloth

tapir

horse

half-ass

mastodon

long-nosed peccary

flat-headed peccary

stout-legged llama

helmeted musk-ox

bison

white-tailed deer

caribou

elk (probably not until 15,000 years BP)

giant beaver

black bear

Florida spectacled bear

giant short-faced bear

cougar

jaguar

saber-toothed cat

scimitar-toothed cat

coyote

dire wolf

Here’s a list of additional megafauna species that likely inhabited the park but whose nearest fossil remains are a considerable distance away.

pampathere

stag-moose

Columbian mammoth

woolly mammoth

Columbian mammoth x woolly mammoth hybrids

gompothere (during warm climate cycles)

giant lion

dhole

The Pleistocene Great Smoky Mountains hosted ~31 megafauna species compared to the present day total of 5.  This is a >80% reduction.  How sad.

Reference:

Linzey, Donald

“Mammals of the Great Smoky Mountains National Park: 2016 Revision”

Southeastern Naturalist 15 Monograph (8) 2016

 

Hares (Lepus sp.) in Southeastern North America during the Late Pleistocene?

April 17, 2017

Librarians can be a pain in the ass.  On 1 occasion I attempted to check out a book from the Augusta College library.  The librarian told me I needed to purchase an alumni card for the privilege of borrowing a book from my alma mater.  I shelled out $25 for the card, and the same #!#!en librarian still wouldn’t let me take the book home.  Another time I was seeking an old Alabama Journal of Science article.  The authors of the article were dead or in a nursing home so I couldn’t get a copy from them.  The journal posts new issues online but not ones this old.  I contacted a librarian from the Alabama library system and asked her to loan the journal to my nearest library where I could pick it up or at least send me a Xeroxed copy of the article.  I offered to pay for postage and use of the copy machine.  She refused because I was not affiliated with the University of Alabama library system.  My efforts to obtain this article have been stymied for 8 years, but I recently learned a surprising tidbit of information from this article that was referenced in another paper I recently came across.  A tooth identified as comparing favorably to hare was found at Bogue Chitto Creek in Dallas County, Alabama; a site where subfossil remains of late Pleistocene species are occasionally discovered.  Bones of hares have been excavated from 7 sites in Florida that date from the Miocene to the early and mid-Pleistocene, but hares are otherwise unknown from late Pleistocene sites this far south, making this an unique find.

Scientists can’t identify this specimen to a species level based on just this single tooth. Bjorn Kurten, co-author of Pleistocene Mammals of North America, states it is difficult to distinguish between rabbit (Sylvilagus sp.) and hare (Lepus sp.)  teeth, and discerning the difference between hare species based on teeth is even harder, if not impossible.  The tooth may have been from a white-tailed (Lepus townsendii), black-tailed (L. californicus), antelope (L. alleni), or an unknown extinct species of jackrabbit that occupied a small geographic range during the late Pleistocene.  This site is probably too far south for another species of hare–the snowshoe (L. americanus).  It’s also possible the tooth is incorrectly identified and belonged to a true rabbit.  Cottontails have long been abundant all over the south, and they are well represented in the fossil record here.  When paleontologists designate a specimen as comparing favorably (cf), they are not 100% certain of the identification.

Map of Alabama highlighting Dallas County

Bogue Chitto Creek, flows through Dallas County, Alabama.  Many Pleistocene fossil specimens have been found in this creek, including the tooth discussed in this article.

Image result for range map for black-tailed jack rabbit

Present day range map of the  black-tailed jackrabbit.  Western species of hares lived in the southeast during the early to mid-Pleistocene.  Scant evidence suggests they may have occurred in the Black Prairie region of central Alabama during the late Pleistocene as well.

Image result for black-tailed jackrabbit

Black-tailed jackrabbit.  Hares differ from true rabbits.  Their young are born with their eyes open and able to hop about and flee from predators.

Bogue Chitto Creek flows through the Black Prairie region of central Alabama.  The compact clay soils here favor grass over trees, and the Black Prairie region itself extends into neighboring Mississippi and Georgia.  Western hare species prefer large treeless plains, and the predominance of this environment here may explain why a relic population of hares existed in this region during the late Pleistocene.  Other environments in the southeast often climax into forests where western hare species can’t survive.  Lagomorphs (hares, rabbits, and pikas) are susceptible to disease outbreaks, and relic populations of hares in the southeast could have easily succumbed to pestilence.  Before I learned about this tooth, I wondered why there was no evidence of hares in the southeast during the late Pleistocene when arid climates led to a greater prevalence of open environments.  This evidence suggests they may have had a local distribution in some parts of the south then.

Image result for snowshoe hares

Snowshoe hares turn white in winter and brown in summer.

Unlike their western relatives, snowshoe hares prefer forested environments.  A leg bone of a snowshoe hare was found in Cave ACb-2 in Colbert County, Alabama.  This is the southernmost known occurrence of this species, although this is not far from its present day range.  There is anecdotal evidence snowshoe hares occurred as far south as the Great Smoky Mountains National Park as recently as the early 20th century where they possibly still exist today.  Snowshoe hare remains dating to the late Pleistocene have also been found in 2 other southern states–Arkansas and Kentucky.  They require areas with snowpack on the ground for at least part of the year.

Reference:

Ebersole, Jon; and Sandy Ebersole

“Late Pleistocene Mammals of Alabama: A Comprehensive Faunal Review with 21 Previously Unreported Taxon”

Alabama Museum of Natural History Bulletin 28 December 2011

 

Pine Martens (Martes americana) Lived in Southeastern North America during the Late Pleistocene

April 13, 2017

If humans didn’t colonize North America, I believe the pine marten would have a much wider range than it does today.  Presently,  this small carnivore is confined to boreal and mixed forests in Canada, the northern Rocky Mountains, and upper Maine.  In historical times they also ranged into New England.  During the late Pleistocene pine martens lived at least as far south as northern Alabama, and they probably ranged into the piedmont.  (The fossil record of the southeastern North American piedmont region is poor.  I rely on educated speculation to imagine the faunal composition there.)  Pine marten remains dating to the late Pleistocene have been excavated from Cave ACb-2 in Colbert County, Alabama, as well as 2 sites in Tennessee and 2 in Virginia–far south of their present day range.  Pine martens live in low densities, hunting small mammals and birds on the forest floor and in tree tops.  Unlike their relative, the fisher (M. pennanti), pine martens don’t readily re-establish populations after they’ve been extirpated from a certain area.  Archaeological evidence suggests fishers ranged as far south as north Georgia until European colonization when their range was greatly reduced by increased fur trapping, and they thrive wherever they are re-introduced.  But pine martens struggle to increase their populations when they are re-introduced.

Native Americans killed pine martens using deadfall traps.  A heavy rock was propped up by a stick attached to a piece of meat with a string.  The rock crushed the pine marten pulling at the bait.  Pine martens often fail to replenish their populations after humans begin trapping them in a certain area.  They’ve been able to survive in Canada because this region is more sparsely inhabited by people.  The denser population of humans in the southeast not only trapped out the pine martens but planted agricultural fields and cleared the deep forest habitat they require.  Humans can be just as detrimental to some species of small animals as they are to megafauna populations.

Image result for American pine marten

Pine marten. They are about the size of a small house cat.

American Marten area.png

Present day range map of the pine marten.  Most of this range was under glacial ice during the Ice Age.  However, they lived south of the ice sheet at least as far south as Alabama.

Map of Alabama highlighting Colbert County

Fossil evidence of pine marten was found in Cave Acb2 in Colbert County, Alabama.  This is its southernmost known occurrence.

Some scientists speculate evidence of pine martens in north Alabama during the Ice Age suggests the region was covered with boreal spruce forests because this is the type of environment where pine martens occur today.  As I’ve noted in previous blog entries, the Ice Age forest that existed in the upper south then was likely a mixed forest consisting of an extinct temperate species of spruce (Critchfield’s) and hardwoods such as oak, hickory, walnut, elm, etc.  Temperatures were only slightly cooler in this region then than they are today.  I believe humans, not climate change, are the reason for the pine marten’s range reduction.

Reference:

Ebersole, Jon; and Sandy Ebersole

“Late Pleistocene Mammals of Alabama: A Comprehensive Faunal Review with 21 Previously Unreported Species”

Alabama Museum of Natural History Bulletin 28 December 2011

Ice Age Western Lakes and Altered Bird Migrations

April 9, 2017

I photographed a lesser yellowlegs (Tringa flavipes) at Woodbridge Lake, Evans, Georgia last weekend.  I was thrilled to see this transient species in such an unexpected locality.  Lesser yellowlegs and many other species of sandpipers spend the winter in South America, Florida, and the coasts of Georgia and South Carolina, but they migrate to their summer breeding grounds in western Canada during spring.  The present day breeding grounds of 22 American species of sandpipers, plovers, curlews, and dowitchers were mostly or completely under glacial ice during Ice Ages.  One might ask where these species bred during Ice Age summers.  Weather patterns were much different then.  Today, much of the west is arid desert, but during Ice Ages the region enjoyed a cooler and much wetter climate.  Many large lakes existed in western North America, and they provided beach, reedy marsh, and open water habitats for aquatic birds.  A large prehistoric body of water, known as Pleistocene Lake Manix, covered what today is the Mojave Desert, and Pleistocene Fossil Lake inundated the modern day site of a desert in central Oregon.  Both of these sites yield abundant remains of the aquatic bird species that formerly spent all or part of their lives there.

Image result for western lakes of North America during the Ice Age

Map of western North America during the Ice Age.  More precipitation and cooler weather patterns resulted in large lakes in place of present day arid landscapes.

Image may contain: bird, outdoor, nature and water

Lesser yellowlegs in Evans, Georgia.  This species is a transient here.  It spends winters in South America, Florida, and the southeastern Atlantic Coast, but breeds during summer in western Canada.

Lesser Yellowlegs Range Map

Range map for a lesser yellowlegs.  Many species of sandpipers have similar ranges.  Almost their entire breeding range was under glacial ice during Ice Ages.  They shifted their breeding ranges to the lakes in western North America that no longer exist and are deserts today.

The entire breeding range of the white fronted goose, the blue goose, and 10 species of ducks was also under glacial ice during the late Pleistocene.  The geese and some species of ducks shifted their breeding ranges to these western lakes.  However, harlequin, eider, king eider, and the extinct Labrador duck have/had more easterly distributions and likely bred near the Atlantic coast south of the ice sheet.  Other migratory species of birds that bred on western lakes during Ice Ages include whooping cranes, northern skuas, and arctic loons.

Many species of aquatic birds that breed in western Canada during summer still breed in western states as well wherever wetlands still exist.  Instead of shifting their breeding ground migration north, these species expanded their summer breeding grounds but still also nest within their Pleistocene range.  This list of species includes 2 loons, 2 grebes, white pelicans, 2 swans, 10 ducks, sandhill cranes, Virginia rails, Hudsonian godwits, American avocets, 3 phalaropes, and 3 jaegers.

The abundant large lakes of Pleistocene western North America attracted some species of non-migratory birds that no longer occur in the region.  Anhingas are fish-eating birds confined to southeastern North America today, but fossil evidence shows they lived in Oregon during the Ice Age.  The beautiful scarlet ibis no longer occurs north of Central America but ranged to Oregon then also.

Image result for scarlet ibis

The scarlet ibis no longer occurs north of Central America but did live as far north as Oregon during Ice Ages.

Western lakes evaporated and turned into desert following the end of the Ice Age.  A number of species failed to adapt by shifting their ranges to newly available Canadian habitat, and they became extinct.  The extinct species include a flamingo, 2 gulls, a jaeger, a cormorant, a grebe, a swan, a goose, and a shelduck.

Breeding colonies of aquatic birds attract predatory species such as bald eagles and great horned owls.  Fossil evidence of both these species is found at most of the sites of these former Pleistocene lakes.

The extinct western lakes would have been a birder’s paradise. Paleo-indians saw the wealth of avifauna as a food source.  Paleo-indians had no television, radio, and little in the way of entertainment, so perhaps bird-watching was a leisure activity for them after they filled their bellies with spit-roasted duck.

Reference:

Jefferson, George

“Remains of the Late Pleistocene Avifauna from Lake Manix, Central Mojave Desert, California”

Bulletin of the Natural History Museum of Los Angeles County June 1985

The Disappearance of the Dickcissel (Spiza americana) from the Mid-Atlantic States

April 4, 2017

The dickcissel is a cyclically abundant grassland bird that spends its summers in North America and flies to South America during winter.  They feed upon grass seeds, though they give their young high protein insects in spring.  Their nests are hidden in tall grass.  Dickcissels are found associated with other grassland species of birds such as meadowlarks, red-winged blackbirds, vesper sparrows, grasshopper sparrows, and savannah sparrows.  Dickcissels prefer clover and alfalfa pastures and old abandoned fields, but they don’t like suburban habitat.  The heart of dickcissel range is the agricultural Midwest.  Migrating stragglers may occur on the Atlantic coast today, but mysteriously, large breeding populations of dickcissels invaded the mid-Atlantic during the middle of the 19th century and just as mysteriously they disappeared from this part of their range by 1900.  Maybe farmers in this region planted more corn and less wheat and clover fields.  Corn rows don’t offer usable habitat for dickcissels.

Summer range map of the dickcissel.  It breeds in the dark red area but vagrants are found within the dotted lines.  They formerly bred in the mid-Atlantic states from South Carolina to Massachusetts.  Stragglers migrate south along the Atlantic coast.

Image result for Spiza americana

A pair of dickcissels.  They are a type of finch.

Dickcissels likely were cyclically abundant during the Pleistocene as well with widely changing geographic ranges.  Studies show dickcissels are eliminated from ranges that are burned, and their numbers decline in areas where bison graze.  This suggests they bred on grasslands temporarily abandoned by grazing megafauna herds and left untouched by fire for at least a year.  Lightning-ignited wild fires were less frequent during colder climate phases of Ice Ages.

As far as I can determine, dickcissel remains have been excavated from only 1 Pleistocene-aged fossil site–Little Box Elder Cave in Wyoming, a site just outside the periphery of their modern day range.  (Little Box Elder deserves a blog entry of its own.  Remains of at least 62 mammalian species were recovered here including horse and the only known association of grizzly and short-faced bears south of the former ice sheet.)  Although dickcissels are known from just this 1 fossil site, they may have been common during some climatic stages of the Pleistocene.  I believe they are rare in the fossil records because they inhabit open grassy areas where their remains are not likely to be preserved.

Little is known abut the dickcissel’s past.  Scientists could use genetic analysis to determine historic and pre-historic population dynamics and their evolutionary relationships to other members of the Cardinalidae family which includes cardinals, grosbeaks, finches, and buntings.  Maybe some day, they will be able to explain why the dickcissel disappeared from mid-Atlantic sites.

The Ghost Boundary of the Last Glacial Maximum Ice Margin

March 30, 2017

The southern margin of the Laurentide Ice Sheet is still evident today in the range maps of at least 19 species of eastern trees.  During the most recent Ice Age about 20,000 years ago glaciers advanced to their farthest extent, a time period known as the Last Glacial Maximum (LGM). This giant sheet of ice pushed boulders, obliterated forests, and even blocked and bent major rivers.  After the glacier began retreating many species of plants colonized the nearby deglaciated territory, but 19 species of trees never advanced and remain locked in the same ranges within which they probably occurred during the Ice Age.    Though the ice margin is long gone it still marks the northern limit of these trees, serving as a kind of ghost boundary.

A majority of paleoecologists long thought a boreal forest consisting of spruce and northern species of pine existed for hundreds of miles south of the ice sheet during the LGM. Studies of fossil pollen abundance deceptively support this belief.  Spruce pollen dating to the LGM predominates in sites as far south as north Georgia.  But spruce and pine trees produce more pollen than oak and other hardwood species. Moreover, spruce and pine pollen is more resistant to decay, so oak pollen is likely underrepresented in samples.  The range maps of the below listed 19 species suggests they occurred all the way up to the ice margin during the LGM.  The forest that existed immediately south of the ice sheet during the Ice Age was probably a strange mix of spruce and hardwood trees not found in any extant natural community.  Sweet gum, post oak, and river birch grew side by side with white spruce and fir.    Scientists refer to this unusual plant composition as “non analogue” communities.  Farther south, spruce pollen excavated from fossil sites likely originated from the extinct temperate species–Critchfield’s spruce.

Below is the list of 19 species whose northern range limit reaches the ghost boundary of the Laurentide Glacier.  This list is from the below referenced study.

shortleaf pine (Pinus echinata)

Virginia pine (P. virginiana)

pitch pine (P. rigida)

sourwood (Oxydendrum arboreum)

willow oak (Quercus phyllos)

southern red oak (Q. falcata)

swamp chestnut oak (Q. michauxii)

overcup oak (Q. lyrata)

post oak (Q. stellata)

yellow buckeye (Aescules flava)

river birch (Betula nigra)

persimmon (Diospyros virginiana)

pecan (Carya illinoinensis)

pumpkin ash (Fraxinus profunda)

sugarberry (Celtis laevigata)

winged elm (Ulmus alata)

sweetgum (Liquidamber styraciflua)

white basswood (Tilia heterophylla)

black locust (Robinia pseudoacacia)

Image result for Laurentide Glacier during LGM

Map of the Laurentide Ice Sheet.  The northern limits of at least 19 species of eastern trees coincides with the ice margin of this glacier where it advanced during the Last Glacial Maximum about 20,000 years ago.

Image result for shortleaf pine range map

Range map of shortleaf pine.   The northern limit of this species closely coincides with where the southern lobe of the Laurentide Glacier advanced.

Image result for sourwood range map

Sourwood range map.

Image result for willow oak range map

Willow oak range map.  Note how it grows to southern New Jersey, just short of where the ice sheet advanced.

Image result for yellow buckeye range map

Yellow buckeye range map.

Liquidambar styraciflua range map 4.png

Sweetgum range map.

When I was researching this blog article, I discovered a 20th species that might be added to this list.  Blackjack oak (Q. marilandica) is a small scrubby oak that grows on poor sandy soils.  The northern limit of this species range also is nearly identical with the ghost boundary of the Laurentide Glacier.  However, there are 2 small disjunct populations of this species in southern Michigan.  Unlike the other 19 species on this list blackjack oak must have temporarily colonized deglaciated territory, thriving on poor gravelly soils recently scoured by glaciers.  After soil improved other species outcompeted blackjack oak over most of the Midwest, but it remains in locally favorable habitat

Reference:

Loehle, C; and H. Iltis

“The Pleistocene Biogeography of Eastern North America: A Nonmigration Scenario for Deciduous Forest”

U.S. Department of Energy Technical Report 1998

https://www.osti.gov/scitech/biblio/564104

The Sourwood-Lettered Sphinx Moth-Black Bear Food Web

March 26, 2017

There are many intricate relationships between different species of plants and animals yet to be discovered.  The interrelationship of sourwood (Oxydendrum arboreum), lettered sphinx moth (Deidami inscripton), and black bear (Ursus americanus) was first noted in the scientific literature just last year.  Sourwood is a small tree, seldom growing to over 6o feet in height, that lives in oak forests and woodlands with acidic soils.  It is the sole species in its genus and a member of the blueberry and azalea family.  The leaves have a sour taste and can be chewed but shouldn’t be swallowed because they are mildly toxic with a high amount of oxalates.  Scientists were studying the occurrence of a major defoliation event of sourwood trees near Unicoi, Tennessee a few years ago.  Here, sourwood trees along with dogwood, summer grape, Virginia creeper, and greenbrier form the understory of a forest composed of red maple, black gum, northern red oak, pitch pine, Virginia pine, chestnut oak, scarlet oak, and striped maple.  They found the sourwood trees were being defoliated by larva of the lettered sphinx moth.

Image result for Oxydendrum arboreum

A sourwood tree in fall foliage.

Lettered Sphinx - Deidamia inscriptum

The lettered sphinx moth.

Image result for lettered sphinx moth caterpillar

The larva of the lettered sphinx moth feeds upon grape, Virginia creeper, and peppervine; but just recently was discovered to have a preference for sourwood over all those plants in the Vitis family.

The lettered sphinx moth is the only species in its genus that lives north of Mexico.  Lettered sphinx moth larva were known to feed upon the leaves of plants in the grape family which also includes Virginia creeper and peppervine.   Lepidopterists refer to these plants as “host species.”  However, when scientists discovered sphinx moth larva defoliating sourwood they conducted an experiment–they put sphinx moth larva in terrariums and offered them grape leaves and sourwood leaves.  The sphinx moth larva preferred the sourwood leaves.  This suggests sphinx moth larva will choose sourwood leaves wherever the ranges of sourwood and species in the grape family overlap.

Scientists hypothesize the oxalates ingested from the sourwood accumulates in the caterpillar, and the toxicity discourages avian predators.  Nevertheless, bears are able to eat the caterpillars.  The authors of the below referenced study found evidence bears were consuming large quantities of sphinx moth caterpillars during the defoliation outbreak.  They saw stem breakage, claw marks on limbs, and bear scat filled with caterpillar remains all around the sourwood trees.  Moth larva provides lots of protein and fat, and the partially digested plant material in their guts likely contains beneficial vitamins for the bears.  The bear scat in turn helps fertilize the soil around the sourwood trees.

Image result for black bear feeding upon caterpillars

Black bear feeding on forest tent caterpillars.  Caterpillars are nice fatty snacks for the bruins.

The interrelationship between sourwood, sphinx moths, and bears probably began during the Pleistocene or perhaps earlier; but it wasn’t noticed or recorded by people until last year.  There are countless other examples like this, yet to be discovered.

Reference:

Levy, Foster; David Wagner and Elaine Walker

“Deidamia inscripton (Lettered Sphinx Moth) Caterpillars feeding on Oxydendrum arboretum (Sourwood) and their Predation by Black Bears in Northeastern Tennessee”

Southeastern Naturalist 15 (3) 2016

Pleistocene Terrapins (Malaclemys terrapin)

March 20, 2017

Until recently, there was little fossil evidence of diamond-backed terrapins. This species inhabits salt marshes and mangrove swamps from the Gulf of Mexico to Cape Cod, Connecticut.  For most of the past 2 million years, sea level has been much lower than it is today due to the larger ice caps of long-lasting Ice Ages.  This means many potential fossil sites where the remains of terrapins might be found are submerged deep underwater and difficult to access.  Sea level has been the same or higher than it is today probably for less than 20% of the last million years, and this reduced the chances easily accessible fossil sites developed in salt marsh zones.  However, the remains of terrapins dating to the Pleistocene have been excavated from  3 sites in Florida, 1 in Georgia, and 1 in South Carolina.  These specimens weren’t described in the scientific literature until 2012.

Image result for Diamondback terrapin

The diamond-backed terrapin is adapted to living in salt marshes.

Image result for salt marsh

Diamond-backed terrapin habitat–a salt marsh.

Image result for diamondback terrapin range map

Diamond-backed terrapin range map.

The 3 sites in Florida where Pleistocene-age terrapin remains were discovered are Page-Ladson, Aucilla River, and Wekiva River.  Terrapin material turned up at Edisto Beach, South Carolina, and fossil hunters found terrapin bones in spoil piles dumped on Andrews Island, Georgia.  (All of Andrews Island is manmade, consisting of spoil piles dredged from the South Brunswick River, aka Fancy Bluff Creek. The Army Corps of Engineers periodically dredges the river to keep it deep enough for safe shipping. Plants have taken root there and it is an haven for wildlife.) The specimens are thought to be Pleistocene in age because they are associated with bones of other species that lived then.  The 3 sites in Florida and the 1 at Edisto Beach commonly yield bones of extinct Pleistocene mammals.  The spoil piles on Andrews Island contained the remains of snapping turtles (Chelydra serpentina), yellow-bellied cooters (Trachemys scripta), and the extinct giant tortoise (Hesperotestudo crassicutata).  These species all lived during the late Pleistocene.  The presence of these 3 species along with the terrapin indicates the local environment at the time of deposition was a brackish marsh bordering an open grassy savannah. Snapping turtles and yellow-bellied cooters are fresh water species that can tolerate brackish conditions, and giant tortoises preferred dry land environments.

Terrapins are not closely related to sea turtles.  Morphological and genetic evidence suggests they are most closely related to freshwater turtles in the Graptemys genus.  In North America this genus includes 10 species of map turtles and saw backs. Terrapins are the only turtle species uniquely adapted to live in salt marshes.  They have lachrymal salt glands that help them get rid of excess salt.  These are absent on all species of fresh water turtles.  Terrapins are also able to drink the layer of rain water that temporarily floats on top of salt water.  Terrapins feed upon shellfish–periwinkle snails are their favorite but they consume shrimp, crabs, and bivalves as well.

Image result for Littorina irrorata

The salt marsh periwinkle (Littorina irrorata) is the diamond-backed terrapin’s favorite food.

Terrapins were formerly so abundant they constituted the main source of protein for coastal slaves during the 18th and 19th century.  But a faddish craze for turtle soup circa 1900 greatly reduced their numbers.  All of the finest restaurants served turtle soup, and it was the most expensive item on the menu.  I’ve only had the opportunity to eat turtle meat once.  Turtle meat is very delicious, tasting like lobster.  Because terrapins feed on shellfish, their flesh likely reflects their diet.  Terrapins are presently a protected species but are still considered threatened.  Real estate development destroys their habitat, they drown in crab traps, cars run over them, and there are people who still eat them.  Egg-eating raccoons flourish as well, since most large predators that kept their population in check no longer exist on the east coast.  If I get the urge to eat turtle again, I’ll stick with the common snapping turtle which as their name suggests are still common.

Reference:

Ehret, Dana; and Benjamin Atkinson

“The Fossil Record of the Diamond-backed Terrapin, Malaclemys terrapin (Testudines: Emydidae)”

Journal of Herpetology 46 (3) September 2012

 

Pleistocene Oysters (Crassostrea virginica)

March 14, 2017

Before humans harvested them, oysters lived longer, grew larger, and produced denser quantities of offspring.  Scientists compared oyster shells from Pleistocene-age oyster reefs with those from Native-American archaeological sites and modern harvests.  Pre-human contact oysters lived as long as 30 years, while oysters since human colonization never live longer than 6 years.  Pleistocene oysters grew up to 10.2 inches, pre-historic oysters from Native-American middens grew to 7.4 inches, and modern oysters reach 6.1 inches.  Native-Americans harvested oysters in a sustainable way, but populations of oysters since European colonization have been reduced by over 99%, despite restoration efforts.  Pollution and overharvesting have destroyed oyster numbers.  This is unfortunate because oyster reefs are a productive natural community, providing habitat for at least 303 species that have co-evolved with oysters over the past 135 million years, ever since these bivalves first evolved. Scientists estimate the original oyster population of Chesapeake Bay was capable of filtering the entire contents of this estuary in just a few days, so they help clean the water as well.  Modern day estuaries are suffering without more abundant populations of oysters.

Image result for ancient oyster midden

Ancient oyster midden.

Image result for oyster reef in Georgia

Pelican in front of a Georgia oyster reef at low tide.

A representative of every species living in oyster reefs could fill a big city aquarium.  Barnacles, mussels, clams, and bryozoans attach themselves to the reefs and live out their lives filter feeding just like their hosts.  Mud crabs (Eurypanopeus depressus) graze on the algae and detritus that accumulates on the reefs and sometimes feed upon the smaller oysters.  Oyster pea crabs (Pinnotheres) depend upon reefs for their very survival. The seashore springtail (Anurida maratima), unusual salt water insects, prey on microorganisms living on the reefs.  Amphipods, worms (Polydora and Polychaetas), anemones, mites, and hydroids are commensal animals dependent upon the existence of oyster reefs.  Boring sponges (Cliona) and starfish directly prey on the oysters.

Anurida maritima.jpg

The seashore springtail is a true insect that lives on oyster reefs.

Image result for Eurypanopeus depressus

The depressed mud crab grazes on algae, detritus, and small oysters on oyster reefs.

Many small species of fish swim in and around oyster reefs during low tide because the structure affords protection from predators.  Species of fish commonly found in Georgia oyster reefs include in order of abundance naked goby (Gobiosoma bosci), feather blenny (Hypoblennius hentzi), skilletfish (Gobiosox strumosus), seaboard goby (Gobiosoma ginsbingi), striped blenny (Chasmodes bosguianus), oyster toad fish (Opsanus sp.), and the crested blenny (Hypleurochilus geminatus).  During high tide larger fish such as sheepshead, black drum, and croakers move in and feed upon the shellfish and smaller fish living on the reef.

Image of Gobiosoma bosc (Naked goby)

The naked goby is the most common fish living in Georgia oyster reefs.  They feed upon worms, crustaceans, and dead open oysters.

Image result for Gobiesox strumosus

The skillet fish clings to oysters with its sucking mouth.

Land vertebrates forage oyster reefs during low tide.  Raccoons and wading birds find many a meal on the reefs.  Oyster catchers (Haematopus palliatus) specialize on feeding upon the oysters and other bivalves growing here.  Even boat-tailed grackles exploit oyster reefs–they eat the amphipods and pea crabs crawling over the reef.

File:American Oystercatcher.jpg

The American oystercatcher thrives on oyster reefs.

Oysters have a complex life cycle.  They expel sperm and eggs into the ocean water, and when these sex cells meet by chance they form larva.  (Oysters change sexes, so that males become females and vice-versa.  Some individuals are hermaphroditic  and expel sperm and egg at the same time.)  The larva lives in the zooplankton until they develop a foot.  The oyster senses pheromones from other oysters on a reef and will attach its foot to the structure where it will remain for the rest of its life, filter feeding upon diatoms, dinoflagellates, inorganic particles, bacteria, and marsh plant detritus.

Oyster reefs also have life cycles.  When oysters begin colonizing an area it is known as the clustering phase.  Oysters attach to each other and on old dead oyster shells during the accretionary stage, building reefs.  Eventually, oysters reach a vertical limit and start building the reef horizontally during the senescent phase.  Large reefs block sediment and shell debris carried by tidal currents and this action can create islands.  Little Egg Island in the middle of the Altamaha River mouth is an example of an island created by an oyster reef.

References:

Bahr, Leonard, William Larsen

“The Ecology of Intertidal Oyster Reefs of the S. Atlantic Coast: A Community Profile”

U.S. Geological Survey 1981

Lockwood, R.; K. Kusperck, S. Bonanani, and Gratt, A.

“Reconstructing Population Demographics and Paleoenvironment of Pleistocene Oyster Assemblages: Establishing a Baseline for Chesapeake Bay Restoration”

North American Paleontological Convention 2014

Rick, Turbin; et. al.

“Millenial-scale Sustainablity of the Chesapeake Bay Native American Oyster Fishery”

PNAS 2016

Wharton, Charles

The Natural Environments of Georgia

Georgia Department of Natural Resources 1978

Shipwrecked on the Florida Coast in 1696

March 10, 2017

During September of 1696 an hurricane wrecked the Reformation on the shore near the present day town of Jupiter, Florida.  The Reformation was a small sailing vessel carrying Jonathan Dickinson and his household along with the crew of mariners.  Dickinson was a Quaker merchant in the process of moving from Jamaica to the new colony of Pennsylvania.  His household included his wife, infant son, 8 African-American slaves, and an Indian servant girl.  They were captured by the hostile Jobeses Indians shortly after salvaging their belongings on the beach.  Spain claimed Florida during this time period, and the Indians were subservient to the Spanish.  Although Spain had signed a peace treaty with England, the Indians never got the message, and they thought they were at war with the British or “Nickaleers” as they called them.  Dickinson’s party considered it wise to pose as Spanish, and this may have saved their lives.  The Indians were suspicious of Dickinson’s true identity but afraid to commit an atrocity against their Spanish masters.  Nevertheless, the Indians stole everything they had, literally stripping the clothes off their backs.  The Indians constantly threatened to kill them and offered little food, giving them 3 meals a week.  Eventually, Dickinson convinced a chief to let them walk north toward St. Augustine.  They traveled naked, exposed to hot days, cold nights and storms; while subsisting on a starvation diet.  After 2 months Spanish soldiers discovered the party and helped them make it the rest of the way to St. Augustine but not before  Dickinson’s cousin (probably weakened by malaria) and 2 of his servants died.  They were well treated by the Spanish who then assisted them to Charleston, South Carolina by providing boats, soldiers, Indian guides, and supplies.  Dickinson kept a journal of this ordeal and later published it.

Image result for map of east florida from Jupiter, Florida

An hurricane wrecked the ship carrying Jonathan Dickinson and his family in 1696 near Jupiter, Florida.  The traveled on foot and in canoes from Jupiter to St. Augustine before they received real help.  The Indians they met provided little aid and threatened to kill them.

The Jobeses Indians did not practice agriculture.  Their diet consisted of fish, shellfish, and wild plant foods.  Dried palmetto berries were an important subsistence item, but members of Dickinson’s party had a hard time adjusting to them.  Dickinson described the taste as resembling “rotten blue cheese.”  Despite their starving condition, many in his party spit them out and just couldn’t keep them down.  They did find coco plums and sea grapes more palatable.  Coco plums are a tropical fruit native to south Florida and the West Indies.  The seed is also edible, reportedly tasting like almonds.  Sea grapes are another tropical fruit, though I have seen them as far north as Harbor Island, South Carolina (far outside their official range.)  They are not real grapes–the plant is a member of the buckwheat family.  Dickinson doesn’t mention prickly pears (Opuntia sp.), but this is a common species in the region exploited by the Indians as well.

Image result for coco plum

Coco plums (Chrisobalanus icaco).  This was 1 of the “berries” Jonathan Dickinson and family had to eat to survive.  They found these more palatable than Carolina palmetto berries.

Image result for Carolina palmetto fruit

Palmetto berries were an important staple item in the Indian diet on the east coast of Florida.  The shipwrecked crew had a hard time tolerating them, even though they were starving.

Image result for Sea grapes

Sea grapes (Cocoloba uvifera).  This species is not closely related to real grapes but are in the buckwheat family.  These were also more palatable for the shipwrecked crew than palmetto berries.

The storm surge of the hurricane that wrecked the ship stranded fish for a mile on the beach.  Dickinson’s party gathered as many as they could before they spoiled.  After this, they depended upon the Indians for fish and clams.  Some of the Indians were excellent spear fishers in the surf, and others caught them from canoes at night, using torch lights that attracted the fish.  Dickinson doesn’t specify what kind of fish the Indians gave them with the exception of 1 entry which mentions drum, probably red drum (Scianops ocellatus).  This is the species nearly wiped out by the blackened redfish craze of the 1980s.

Image result for red drum

Red drum.  Although they often ate fish on their journey, this is the only species specifically mentioned in Jonathan Dickinson’s journal.

Dickinson’s party didn’t come across cultivated fields until they almost reached St. Augustine.  Here, they found a field of “pompions.”  Pumpkins don’t grow well in Florida.  Instead, these were probably a variety of winter squash.  The Indians who lived north of St. Augustine on the Georgia and South Carolina coast did practice agriculture.  On Dickinson’s journey from St. Augustine to Charleston they were well supplied with corn, beans (which he mistakenly calls “peas”), squash, and unspecified herbs.  They were even able to procure garlic and hot pepper to season the corn and beans.

Dickinson barely mentions the wildlife they encountered.  He saw bear tracks “and the marks of other beasts” in the sand near an inlet.  When they traveled by sail between St. Augustine and Charleston, they often stopped for the night or a few days on the sea islands.  Deer and wild hogs abounded on these islands and their Indian guides hunted them and provided meat for everybody.  There were plenty of rabbits on 1 island but they didn’t stay long enough to hunt them.

Dickinson’s party had to traverse many natural communities between their shipwreck and Charleston such as beach, scrub pine, pine flatwoods and savannah, maritime forests, cypress swamps, mangroves, salt marshes, and ocean inlets.  Florida named a state park in honor of Jonathan Dickinson near the site of their shipwreck, and many of these natural communities are represented there.

Reference:

Dickinson, Jonathan

Jonathan Dickinson’s Journal or God’s Protecting Providence

Florida Classics Library 1985