Late Miocene/Early Pliocene Climate Change Caused Sudden Burst of Warbler Speciation

I had a good birding day a few weeks ago.  I was walking alongside Woodbridge Lake in Evans, Georgia, and I saw many of the aquatic species I almost always see there–Canadian geese, mallard ducks, pied-billed grebes, cormorants, great blue heron, and great egret.  But much to my surprise, I also saw an immature bald eagle.  When I first spotted it, I assumed it was a black vulture because there was a flock of those scavengers soaring over the lake.  The eagle briefly flew low enough for me to identify it.  A couple osprey were soaring above the eagle, and I wonder if the young eagle was following them to supplement its diet.  Eagles are notorious for stealing fish from ospreys.  A lone Cooper’s hawk was another unexpected species to make my birding list that day.  Away from the water I saw a small flock of pine warblers (Setophaga pinus) roosting near the top of a pine tree.  Pine warblers are the only year round resident warbler species in southeastern North America.  Myrtle warblers (Dendroica coronata) spend winters in the south, and many warbler species either spend summers in the region or pass through during spring and fall on their migrations north and south.  This sighting made me curious about the fossil record of warblers, so I did an internet search.  As far as I could determine, fossil evidence of warblers is non-existent.  This is not surprising.  Warblers inhabit forest environments where their remains are not likely to be preserved.  However, I did come across an interesting genetic study that determined a sudden burst of warbler speciation occurred during the late Miocene/early Pliocene.

Image may contain: 1 person, tree, sky, plant, outdoor and nature

I thought these were pine warblers, but a reader identified them as cedar waxwings, and I agree.  Nevertheless, my mistaken id inspired this blog entry.  I took this photo a few weeks ago.

This speciation event occurred between 4.5 million years BP-7 million years BP when climate became warmer and drier.  The authors of this study note this coincides with a time of faunal turnover.  Rhinos and species of 3-toed horses became extinct when warblers speciated into many different species.  They conclude the aridity fragmented forests, isolating many different populations of warblers that then evolved into unique species.  It’s a remarkable example of adaptive radiation, defined as the evolutionary lineage differentiation into a suite of closely related species differing in their use of ecological resources.  It resulted in the evolution of over 2 dozen species.  Warbler adaptive radiation differs from that of other species groups because there is little morphological difference between the species.  Darwin’s famous Galapagos Island finches evolved different bills depending upon which ecological niche they inhabited, but warblers remained very similar.

By the middle of the Pliocene, habitats began to resemble those that exist today (if left alone by man), and warbler speciation slowed down because existing species came into contact with each other and competed for all of the existing niches.  Still, the evolution of a few species may be linked to glacial/interglacial cycles.  Townsend’s warbler (D. townsendi), hermit warblers (D. occidentalis), and black-throated green warblers (D. virens) may have speciated during the Pleistocene.  Black-throated gray warblers (D. nigrescens ) and Grace’s warbler (D. gracae) may be the result of hybridization events.

The pine warblers of the south are closely related to the founder population of warblers.  The ancestors of all warblers likely were a more adaptable species, like the pine warbler, and less dependent upon migration for survival.  Pine warblers are 1 of the few warbler species that can feed upon seeds.  Most warbler species eat insects and fruit and thus require warmer temperatures.

Rapid adaptive radiation among mammals, like warbler speciation, followed a similar pattern after dinosaurs became extinct.  There was a sudden burst of speciation of mammals occupying newly available niches vacated by dinosaurs.  But the rate of speciation slowed down when enough species evolved that competition increased for those niches.


Lovette, I.; and E. Bermingham

“Explosive Speciation in the New World Dendroica Warblers”

Royal Society of Biological Sciences 1999


3 Responses to “Late Miocene/Early Pliocene Climate Change Caused Sudden Burst of Warbler Speciation”

  1. Tom Says:

    Thanks for another interesting post Mark. I think those are cedar waxwings in that picture–a species with an interesting life history. I was going to suggest they might make for an interesting post but it looks like you’ve already covered them!

  2. ina puustinen-westerholm Says:

    As usual..another reading..which pulls us out of to day..overtrodden the main..and offers..healthy think about. Here..we are into week 4..of the northeast barn corner..owl nesting box..installation. All in our little corner of the rural landscape..are thinking strong..owl mating/nesting thoughts!!!

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: