Posts Tagged ‘pollen’

Ocean Drilling Project 1059A Found a Treasure for Paleoecologists

May 9, 2011

A photo of an ocean drilling project from google images.

In 1997 oceanographers journeyed to a remote location over the Blake Outer Ridge, an extension of the continental shelf that consists of sedimentary drift.  “Sedimentary drift” is just a fancy expression for the sloughing off of eroded land.  Here, the ocean is almost two miles deep.  Nevertheless, they were able to send a drill to the bottom, but it didn’t stop there–it pierced the deep sea mud for the length of a football field and brought back a plug of this carbonate ooze for analysis.  They found no oil, nor gold, but they did find something of indispensible value for paleoecologists and paleoclimatologists–ancient pollen and foraminifera.

Map of Blake Outer Ridge from google images.  The coordinates of where Ocean Drilling Project 1059A took a core is 31 degrees north 40,46 and 75 degrees west 21,13.

Two brilliant scientists from Columbia University conducted a remarkable study of this plug of ocean mud.  Linda Huesser and D. Oppo took samples at 10 cm. intervals to a depth of 40 meters.  They estimated these intervals to be the temporal equivalent of ~400 year intervals, so that for every 10 cm. they were turning the page of an ecological record book that stretched back 400 years a page.  The study covers a period of time from ~140,000 Bp-~50,000 Bp, making this the only “chronostratigraphical” study of pollen from this time period in the southeastern region of North America.

They found a correlation between oxygen isotope ratios in oceanic foraminfera, and the waxing and waning of spruce/pine and oak forest abundance.  Foraminifera are single celled protozoa with shells made of calcium carbonate.  Foraminifera absorb oxygen in their shells from water.  This sea water contains varying amounts of heavy oxygen, or O-18, which is an isotope of normal oxygen.  (An isotope is an element with a different number of neutrons than its parent element.)  During cold climatic stages known as glacials and stadials, there is more heavy oxygen in the ocean because of increased evaporation due to a more arid climate as much of earth’s water becomes locked in ice.

Photos from google images.  Top: Cibicidoides weullerstarfi.  Bottom: Globigerinoides ruber.  Scientists used fossils of both of these species of foraminfera  in this study to determine past temperatures.

Cesar Emiliani formulated a mathmatical chart that estimated past temperatures based on ratios of heavy oxygen to normal oxygen in the shells of foraminifera.  These estimates are considered accurate.  He numbered past stages of climate corresponding to the oxygen isotope ratios.  The stages from 75,000-140,000 years ago are known as 5a, 5b, 5c, 5d, 5e, and 6.  The final stage of the Illinois Ice Age is 6; the Sangamonian Interglacial is knowns as 5e; 5c and 5a are warm interstadials within the Wisconsinian Ice Age; 5b and 5d are stadials, or cold stages within the Wisconsinian.

Pollen graph from the paper referenced below.  The x axis is time represented at 5,000 year intervals from 140,000-50,000 BP.  The y axis is abundance of pollen from oak, pine, spruce, hemlock, and herbs.  Planktonic and benthic foraminfera oxygen isotope ratios are also on the y axis.  There is a correlation between oxygen isotope ratios and the abundance of certain kinds of plant pollen.  Low ratios of heavy oxygen indicate warm climate.  These low ratios correlate closely with high abundance of oak, and vice versa.

Pollen from southeastern North America reached the Blake Outer Ridge via wind and rivers flowing into the ocean.  The pollen graph above shows the correlation between tree pollen and oceanic temperatures estimated using oxygen isotope ratios in foraminfera as proxies.  140,000 years ago pine dominated the forests and spruce was a common component.  The transition ~132,000 years ago from the Illinois Ice Age to the Sangamonian Interglacial was marked by a dramatic increased abundance of oak and a significant decrease in spruce.  Pine remained common throughout, only falling below 50% during one interstadial, though at the beginning of the Sangamonian it fell from 70% to 55%.  This data is interpeted to mean that oak forests and oak and pine savannahs prevailed during warm climatic stages, while pine/spruce dominated the landscape during cold climatic stages.  In the southeast, however, spruce never became as prevalent as they did in the Appalachians and midwest.  Probably, the increase of spruce in the south can be explained for a couple of reasons: 1) Cooler summers allowed for an influx of spruce from the extensive spruce forests of the north, and they took space away from oaks. Pure spruce forests may have existed in north Georgia, but in the piedmont and coastal plain it probably existed as an occasional component of mixed forests. 2) Coniferous trees compete better than oaks in arid atmospheres with lower CO2 levels like those that occurred during stadials.

The graph shows that oaks increased with every interstadial, but unlike the interglacial of today, spruce and hemlock didn’t disappear completely from the coastal plain, indicating summers that were still cool enough at least for one species of spruce as well as the hemlock.

In my March 23rd blog entry I reviewed some of the Natural Environments of Georgia chronicled by the late Charles Wharton.  Here, I hypothesize on some Ice Age environments that likely were common during stadials and interstadials.  Ice Age floral associations should be considered the norm because glacial stages including both usually last 10 times longer than full blown interglacials.  Today, floral associations that we consider normal are actually an aberration.

1. Spruce, hickory, beech–W.A. Watts found a pollen fossil site in north Florida dating to late in the Wisconsinian Ice Age that seems to have been a forest co-dominated by these unlikely “disharmonious” species.  He discovered this site before science knew about the extinct species, Critchfield’s spruce, which apparently was a more temperate type than its northerly cousins.  I suspect spruce, hickory, beech was probably a common type of old growth forest association throughout the south, especially during interstadials.  There is no evidence that any of the modern spruce species penetrated farther south than Bartow County, Georgia.  Most of the spruce pollen from the ODP 1059 study likely came from Critchfield’s spruce.

2. Grassy oak savannahs–Extremely rare today, I suspect this was a common landscape during warm dry interstadials.  A pollen sample from sediment at the vertebrate fossil site, Watkins Quarry, showed evidence of an environment with lots of grass and some oak.  Dry climates inhibited the growth of trees, but the decreased number of thunderstorms meant a lesser frequency of fire, perhaps allowing oaks to outcompete pines.  An environment like this would have been ideal for megafauna and perhaps they maintained it through grazing, trampling, and uprooting trees.  Acorns, grass, and berries provided a lot of food.

3. Open pine savannah–I already discussed this type (still common until European settlement) in an earlier blog entry.

4. Mixed forests of southern and northern pines and oaks–The piedmont was  likely a transition zone between spruce forests in the mountains and pine and oak savannahs in the coastal plain.  The Nodoroc mud volcano in Winder, Georgia yielded pollen from both northern and southern pines as well as oak, hickory, fir, chestnut, and beech.  It was likely a region with mixed stands of white pine (a northern type) and shortleaf pine (a southern type), and oaks interspersed with meadows and bushy thickets in varying stages of forest succession depending upon when the last fire or tornado swept through.  These provided a variety of patch habitats for wildlife.

5. Blue Stem Black Belt Prairie–Black belt soil with blue stem grass prairie was more common in Alabama and Mississippi until European settlement but some occurred in Houston County, Georgia.  The soil in some of these areas inhibits tree growth.  Unchecked fires caused by frequent thunderstorms during warm wet climates, droughts during dry climatic phases, and megafauna grazing would’ve made this type of environment more widespread during the Ice Age.

6. Oak sand scrub–During cold arid stadials, rivers shrank and dried up completely in many places.  Winds blew river sands across the landscape in big eolian dunes.  Blackjack oaks, cedars, and grass took root on some of these, but the poor quality of the soil only allowed for scrubby growth.  Oak thickets, cactus, and sparse grass were likely a favored habitat of the flat-headed peccary and hog-nosed skunk.

7. Mountain pine, spruce, and meadow–This type was probably common in the north Georgia mountains and consisted of white pine, and several kinds of spruce interspersed with large meadows. Appalachian balds may be relics of this type of environment.  

Photo I took of an Appalachian bald in North Carolina.  This type of landscape was probably common in north Georgia during the Ice Age, and may have occurred well into the piedmont.  One of my very first blog entries is all about Appalachian balds which contain disjunct populations of plant species not found anywhere else south of Canada.

8. Hemlock Forests–Cool moist climatic stages allowed for the spread of this kind of environment.  The highest level of hemlock pollen occurred during the late Sangamonian Interglacial, indicating cool moist climate preceded the regrowth of glacial ice.  In fact one of the findings of the below referenced study was that  temperature changes precede changes in growth or dissolution of glacial ice.

Reference:

Heusser, Linda; and D. Oppo

“Millenial and orbital scale climatic variability in southeastern U.S. and in the subtropical Atlantic durin MIS 5: evidence from pollen and isotope in ODP site 1059”

Earth and Planetary Science Letters 214 (2003)

Pleistocene Passenger Pigeon Populations

August 27, 2010

(Please forgive the excessive alliteration in the title.)

It’s hard to imagine the massive number of passenger pigeons (Ectopistes migratorius) that used to live in North America as recently as the mid to late 19th century.  For a description of their numbers, I’ve dug up an account J.J. Audubon gave in his Ornithological Biography.  Before I reprint this passage I want to comment on his writing style.  I enjoy his prose, but he does have a bad habit of writing in the passive voice, a style Stephen King in his book, On Writing, referred to as farting in an elevator.  Also, English was his second language because he was born in France.  Nevertheless, I think this makes for a fascinating description of a nature scene that no longer exists.

The multitudes of wild pigeons in our woods are astonishing.  Indeed, after having viewed them so often, and under so many circumstances, I even now feel inclined to pause, and assure myself that what I am going to relate is fact.  Yet I have seen it all, and that too in the company of persons, who, like myself, were struck with amazement.

In the autumn of 1813, I left my house at Henderson, on the banks of the Ohio, on my way to Louisville.  In passing over the barrens a few miles beyond Hardensburgh, I observed the pigeons flying from north-east to south-west, in greater numbers than I thought I had ever seen them before, and feeling an inclination to count the flocks that might pass within the reach of my eye in one hour, I dismounted, seated myself on an eminence, and began to mark with my pencil, making a dot for every flock that passed.  In a short time finding the task which I had undertaken impractical, as the birds poured in countless multitudes, I rose, and counting the dots put down, found that 163 had been made in 21 minutes.  I traveled on, and still met more the farther I proceeded.  The air was literally filled with pigeons; the light of the noon-day was obscured as by an eclipse; the dung fell in spots, not unlike melting flakes of snow; and the continuing buzz of wings had a tendency to lull my senses to repose…

“It may not, perhaps, be out of place to attempt an estimate of the number of pigeons contained in one of those mighty flocks, and of the quantity of food consumed by its members.  The inquiry will tend to shew the astonishing bounty of the great Author of Nature in providing for the wants of his creatures.  Let us take a column of one mile in breadth, which is far below average size, and suppose it passing over us without interruption for three hours, at the rate mentioned above as one mile in a minute.  This will give us a parallelogram of 180 miles by 1,  covering 180 square miles.  Allowing two pigeons to the square yard, we have one billion, one hundred and fifteen million, one-hundred and thirty-six thousand pigeons in one flock.  As every pigeon daily consumed fully half a pint of food, the quantity necessary for supplying this vast multitude must be eight million seven hundred twelve thousand bushels per day.”

***********************************************************

Some archaeologists believe the massive population of passenger pigeons that colonists in North America reported from 1700-1870 was a temporary phenomenon.  Thomas Neuman has written at least two journal articles suggesting passenger pigeon populations exploded following the decimation of Indians after their first contact with European diseases such as smallpox, influenza, and measles.  Before this, Dr. Neuman believes this species was not particularly common.  Supposedly, when Indian populations were reduced, there was more forest mast available for birds because humans weren’t gathering the nuts and acorns they fed upon.  In his book 1491 Charles Mann discusses this theory and notes that archaeologists find few passenger pigeon bones at sites of large Indian settlements.

I disagree with this theory because it makes little sense for several reasons which I shall enumerate.

1. Passenger pigeons could not survive as a species unless they existed in extremely large populations.  The survival strategy of this species was to reproduce rapidly and roost and nest in enormous colonies so that they overwhelmed predation.  Predators ate many individuals, but there was a limit to how much their stomachs could hold.  If, as these archaeologists suggest, the passenger pigeon was just an occasional bird, the species would’ve become extinct long before the white man arrived on the continent because their defense mechanisms revolved around living in large colonies.

2. Even if human populations were at the high end of what archaeologists believe, they would’ve made little impact on the amount of forest mast available.  Pre-Columbian forests were extensive, and there was always plenty of forest mast for both humans and huge pigeon colonies.

3. Archaeologists don’t find many passenger pigeon bones in sites of large Indian settlements because Indians probably went to their roosting grounds and feasted on them there and simply didn’t bring the bones back to their villages.

4. Jacques Cartier, an early explorer, reported large pigeon colonies on Prince Edward Island in 1534…before Indian populations were reduced by disease.

5. Pigeon fossils are abundant in an early Holocene fossil site in Western Canada (Charlie Lake, British Columbia).  They are also a common fossil in late Pleistocene avifaunas including Bell Cave, Alabama, Cheek Bend Cave, Tennessee, and Ladds and Kingston Saltpeter Cave in Georgia.

At Ladds fossils of only 4 bird species were discovered.  Passenger pigeons were 1 of the 4.  This may be coincidence, but it’s believed that passenger pigeon biomass made up 25% of all bird populations in North America during the early part of the 19th century.  Many more species of birds were found in the deposit at Kingston Saltpeter Cave.  I compared the minimum number of individual passenger pigeon fossils from KSC to the total bird remains of all other species found there.  Ruffed grouse were the most common species, making up 30% of bird remains, but passenger pigeons made up 6%, despite being a highly migratory bird.  Assuming they spent 6 months of the year around KSC, that means at times, they may have made up to 12% of the bird population in the area.  If they stayed in the area around the cave for only 2 months of the year, they quite possibly made up 36% of the bird population at certain times of the year there.

I must mention, however, that estimating ancient bird populations based on the number of bird fossils found in cave deposits is a rather dubious method.  Nevertheless, habitat for passenger pigeons in southeastern North America during the Pleistocene must have been ideal for this species.

During colonial times this bird nested throughout the midwest, but spent September-February in southeastern states.  For much of the duration of the Wisconsin Ice Age, most of the area where they later nested was under glacial ice, so it’s likely their nesting areas shifted south.  They probably were year round residents everywhere south of the Laurentide ice sheet, except during nesting season when they nested in southern river bottomlands where beech and oak trees remained plentiful, even during cold arid climatic phases.

Today, beech trees are a rare relic in much of the southeast, but during certain climatic phases of the Wisconsin Ice Age, they were even a dominant tree on some lands, according to records of fossil pollen in Alabama, and South Carolina.  From 14,000-11,000 years BP beech was a common tree, while pine, which dominated southern forests during the LGM, temporarily declined drastically.  Beech is well adapted to pigeon and squirrel foraging because this tree spreads through sucker roots, and if animals eat the tree nuts, this species can still propagate.  Beech tree pollen is also present in the Nodoroc fossil site in central Georgia near Winder and at the Gray’s Reef site off Sapelo Island, which was above sea level 30,000 years ago.  The latter site yielded evidence of a forest consisting of a strange mixture of cool temperate and warm weather species of plants.  The south’s Ice Age ecosystem was a mixture of woodlands and grasslands, and it provided excellent habitat for passenger pigeons.  I think the expansion of southern beech tree forests, as the Ice Age waned, is evidence the population of pigeons may have spiked about 14,000 years BP, creating the nucleus that later colonized the midwest after the glacier melted and broadleaf trees re-established themselves there.

References.

Driver, J.C.; and K.A. Hobson

“A 10,500 year sequence of bird remains from the southern boreal forest region of western Canada”

Arctic 45 (2) 1992

Ellsworth, Joshua; and Brenda McComb

“Potential effects of Passenger Pigeon flocks on the structure and composition of pre-settlement forests of eastern North America”

Conservation Biology 17 (6) pp. 1548-1558 2003

Mann, Charles

1491

Knopf 2005

www.paleodb.org