Posts Tagged ‘jack pine’

The Mysterious Nodoroc Site in Winder, Georgia

January 9, 2013

The geological origin of a mud volcano located in Winder, Georgia is a mystery waiting to be solved.  As far as I know, geologists haven’t ever studied this unexplained watery bog that last erupted circa 1800.  It’s probably similar to mud volcanoes found in Africa and southeast Asia.  About 10 years ago, a mud volcano in Cameroon exploded and killed a whole village by carbon dioxide asphyxiation. The carbon dioxide displaced the oxygen in the atmosphere.  An atmosphere of just 10% carbon dioxide causes people to become comatose; an atmosphere of 30 % CO2 causes people to drop dead immediately.

Winder, Georgia is in Barrow County which is between Athens and Atlanta.  My grandparents used to live there.

Nodoroc is a Creek Indian word meaning gateway to hell.  It’s an odd natural boggy pond that used to release a constant bluish smoke while bubbling.  The Creek Indians built an altar of heavy stones on the edge of the volcano where they executed criminals and then threw the corpses in the bog.  It was their way of sending deserving souls to hell.  They believed the volcano was protected by the wog–a devil dog with red eyes and the head of a bear.  Despite the cultural importance of the site, the Creek Indians sold the pond and the land around it to the English for 14 pounds of beads.  Some early colonist made off with the altar and now it’s lost to archaeologists.

I couldn’t find a photo of Nodoroc on google images that I could confirm was the actual site, but the below link is an aerial photograph.  The brown muddy expanse is labeled and obvious to see.  The link below that is of video of a mud volcano in Yellowstone National Park.  Unlike Nodoroc, it is still active and it probably has a different kind of origin.  The Yellowstone mud volcano is caused by heating and cooling subterranean rock on a fault line, while the Nodoroc mud volcano resulted from decaying organic matter.

http://www.wikimapia.org/#lat=33.973821&lon=-83.6727574&z=19&l=0&m=b

http://www.youtube.com/watch?v=iJ8qfpMkDs0

The first European explorers to visit Nodoroc say that it burned and dissolved everything they threw in it.  Even rainwater evaporated when striking the bog.  They reported that the area attracted lots of animals, but I think the abundance of wildlife resulted from Indians avoiding the place which they only used for executions.

Circa 1800 John Gosset built a cabin nearby and cleared a field around Nodoroc.  One day, Gosset and his wife witnessed the last eruption of the mud volcano.  His wife noticed an unusual amount of fog over the bog that morning.  She called her husband who was busy ploughing to come see it.  A loud explosion was followed by a shower of hot mud particles.  After the eruption the volcano settled several feet and cooled.  Decaying matter likely caused a fermentation reaction, releasing carbon dioxide and methane that had been trapped under the mud.

In the days of free range livestock Nodoroc was known as a cattle mire because cows constantly were  getting stuck in the quicksand-like mud.  Farmers eventually erected a fence to prevent any more losses.  Nodoroc was formerly about 5 acres in extent but circa 1900 John Harris drained part of it and grew several successful crops of corn.  While ploughing, he often came across bones and horns.  They were mostly the bones of recent cattle, but I suspect they may have been mixed in with Pleistocene fossils–a point I will discuss later.

Gary Bolton, a layman, visited the site in 1987 out of curiousity.  He noted that tulip tree saplings had colonized part of the pond, but many fell over, as if the shaky marsh ground couldn’t support deep roots.  Most of Nodoroc was covered with “thousands” of crayfish chimneys.  He mentioned sticking a shovel in the pond and finding that the level of muck was deeper than the shovel itself.

Acidic peat bogs are rare in the piedmont region of southeastern North America.  Peat bogs often contain and preserve pollen, plant macrofossils, animal fossils, and human artifacts.  So far, Nodoroc has only attacted 2 paleobotanists.  Dr. Stephen Jackson and Dr. Donald Whitehead investigated the site in 1981 and published their findings 10 years later.  They took 2 deep piston cores of sediment that they analyzed.  They did find 2 statigraphically datable segments in the core: 1 dated from 26,000 BP-22,00 BP, and the other from 3600 BP to the present.  This study was done before radiocarbon dates were recalibrated.  These dates roughly translate to between 30,000 calender years BP-26,000 calender years BP, and from 4,000 calender years to the present.  The lack of continuous stratigraphy is explained by long periods of time when water level was low and deposition didn’t occur.  The oldest segment dates to the weak interstadial immediately prior to the cold phase that led to the Last Glacial Maximum.

The site itself was probably an open marshy environment during the interstadial.  Plant macrofossils and pollen indicate an abundance of sphagnum peat moss, arrowhead (Sagitteria sp.), sedges, and carnivorous pitcher plants growing directly on the site.  Shrubs such as alder, myrtle, and mountain laurel and/or blueberry (Ericereae genus) grew on the marsh edge.  Pines and oaks dominated the forest surrounding the site.  With the exception of white pine (Pinus strobus) scientists can’t distinguish between species of pine by looking at pollen grains. After looking at the pine pollen and pine needle fossils under a microscope Drs. Jackson and Whitehead were only able to eliminate 3 species–longleaf, slash, and table mountain, none of which would have been expected to be here anyway.  However, the size of the pollen grains suggests both northern and southern species of pines were present.  Northern species of pine tend to have smaller pollen grains, while southern species of pine tend to have larger grains.  Both large and small grains were present.  My educated guess is that jack pine (Pinus banksiana) and shortleaf pine (Pinus echinata) were the dominant pinus species, while white pine was also present.  Macrofossils of jack pine, a species that now no longer occurs farther south than Michigan, have been found in Missouri and north Georgia sites dating to the mid-Wisconsinian interstadial.  Apparently, it was a more widespread species then than it is today.  Shortleaf pine, a southern species, occurs as far north as southern Ohio, and its short needles can endure snowy and icy conditions without much damage.  There’s no way of determining which species of oaks predominated here–all oak pollen looks too similar.

Other important trees growing in this interstadial forest were Critchfield’s spruce (my species assumption), fir, and hickory.  Chestnut, beech, sugar maple, and birch were present but at low levels.  (After the Ice Age chestnut became much more abundant in the region until its unfortunate extirpation 100 years ago.)  Hazelnut was a common bush growing in the understory.  During the Wisconsinian Ice Age hazelnut ranged throughout the south but is practically absent here today.  Noticeably absent or rare then were sweetgum, tupelo, and red maple all of which are common today in this area.

Fir trees thrive in regions with snowy winters.  As I mentioned in last week’s blog entry, the piedmont region of southeastern North America during the Ice Age was an abrupt transition zone between subtropical Gulf Coast Corridor grasslands and boreal forests of the Southern Appalachians.  Humid tropical fronts often hit cold air causing lots of snowfall.  Critchfield’s spruce, firs, and short-needled pines were and are well adapted to the snowy conditions that may have once blanketed the south.  It would have been interesting to see this environment where warm climate fauna frequently wandered to mix with creatures from the cold north.

I’m surprised no Pleistocene fossils habe been discovered or noticed from Nodoroc.  If cows often perished in the mire, I’m sure some of the Pleistocene megafauna did as well.  Perhaps the Indian legend of the wog is based on skeletel material of extinct beasts they discovered.  If I owned the pond I’d have it dragged for fossils and artifacts.

Artist’s rendition of the wog, a creature of Creek Indian legend that supposedly guarded Nodoroc.  Was the legend based on Pleistocene-aged fossils Indians found in the bog?  Cows used to get stuck in the mire and perish.  Pleistocene megafauna must have also.  This site should be prospected for Pleistocene vertebrate fossils which are probably mixed with modern livestock bones.

References:

Bartow County Historical Society

The History of Nodoroc and Tales of the Wog

Jackson, Stephen; and Donald Whitehead

“Pollen and Macrofossils from Wisconsinian Interstadial Sediments in Northeastern Georgia”

Quaternary Research 39 1993

Wilson, Gustavius

The early history of Jackson County, Georgia

W.E. White 1914

Pleistocene Soil Cycles

February 24, 2012

In his book The Natural Environments of Georgia Dr. Charles Wharton suggests Ice Age coniferous forests consisting of boreal species built many of the soils in the mountains and piedmont of Georgia.  This is fodder for contemplation of Georgia’s ecology.  Pleistocene soil composition must have gone through cycles that paralleled the climate cycles of stadial to interstadial and glacial to interglacial.  Soils became thin during stadials but were enrichened during interstadials and interglacials.  I am aware of no studies investigating the origins of topsoils in Georgia, and this kind of study is not even possible now because almost all of Georgia’s original topsoil has eroded or blown away, thanks to poor agricultural practices.  Nevertheless, speculation on the ecology of the Pleistocene soil cycle is another fruitful topic for this blog.

Fossil evidence from Bob Black Pond in Bartow County shows that a forest composed of jack pine, red pine, white pine, white spruce, Critchfield’s spruce, and paper birch grew in north Georgia during the Last Glacial Maximum ~21,000 BP.  This probably represents a common dominant forest in north Georgia during climate phases of the Ice Age known as stadials–times of arid cold when the Laurentide Glacier expanded to the north and locked up much of the planet’s atmospheric moisture.  To contemplate a full cycle of Pleistocene soil development, let’s go back farther in time to about 30,000 BP.

30,000 years ago, an interstadial that had lasted for about 4,000 years was coming to an end.  Interstadials were warmer, wetter climate phases within Ice Ages.  Studies of the pollen record show oak pollen always increased during interstadials, while pollen from coniferous trees decreased.  The leaves and debris from oaks and other hardwoods build up a healthy, thick topsoil, usually taking about 100-200 years to do so.  After 4,000 years most of the topsoil in the region must have been particularly rich.

Ice Age climate fluctuated rapidly.  Imagine now, that an ice dam on the St. Lawrence River melted enough during the warming trend of the previous 4,000 years to collapse, sending a torrent of freshwater and ice bergs into the North Atlantic.  This flood of cold freshwater shut down the thermohaline current that had kept the climate warm for millennia.  Climate changed immediately to colder, more arid, and windier conditions.  CO2 levels plummeted as well.  After a few decades many of the oaks and other broadleaf trees that had spread to upland habitats began to die from drought and wind and lower CO2 levels.  Grasses and coniferous trees compete better than hardwoods under these conditions.  Plants need CO2 for respiration.  During stadials CO2 levels fell so low that even some coniferous trees became starved for CO2.  Fossil juniper from the La Brea tarpits, for example, show evidence of CO2 starvation.  Under these conditions broadleaf trees only persist near rivers and streams.  Grasslands and brush thrive in the shade free environment, but the burgeoning bison, horse, and mammoth populations overgrazed the vegetation, leaving bare soil which blows away in the wind and much of the topsoil is thinned or lost.

Jack pine forest in Michigan. The landscape much resembles that of an open pine savannah in the coastal plain of Georgia.  Like an open pine savannah, jack pine forests are fire dependent.  Jack pine grew in the mountains and the piedmont of Georgia during stadials, the coldest stages of the Ice Age, but is completely absent from the state today.  The hilly terrain likely made for a more varied environment though in Georgia than this photo indicates.

Today, Eastern jack pine (Pinus banksiana) grows no farther south than northern Michigan and is a common tree on sandy outwashes in Ontario, Canada.  It’s a pioneer species, able to grow on thin sandy soils.  During the driest coldest phase of stadials, jack pine colonized dry upland sites in Georgia where many oaks could no longer dominate.  Jack pine forests are rich environments.  They grow thinly allowing light to hit the forest floor.  This promotes the growth of grasses and berry bushes.  Kirtland’s warblers, upland sandpipers, bluebirds, cowbirds, deer, bear, snowshoe hare, and rare prairie plants such as Allegheny plum, rough fescue, and Hill’s thistle all thrive in jack pine forests.  In Pleistocene Georgia many of these same species with the addition of extinct grass-eating mammals  were probably also abundant.  The rare Kirtland’s warbler (now summering in only a few counties in Michigan) winters in the Bahamas which were expanded in size due to lowered sea levels during the Ice Age.  (https://markgelbart.wordpress.com/2011/11/11/banana-hole-fossil-sites/) I suspect this bird was more widepread then and may have occurred in Georgia because it is dependent on jack pine forests.  Perhaps not coincidentally, fossils of upland sandpipers have been excavated from Bartow County where the jack pine fossils were found.

Fires were rare during stadials because lightning storms were rare.  Jack pines require fire for regeneration.  Other species of pine less dependent on fire such as red pine (Pinus resinosa) and white pine (Pinus stroba) encroached into jack pine forests in the absence of fire.  Post oaks which are among the most fire resistant and drought resistant oaks also move into these pioneer forests.  Gradually, the needles and debris from Ice Age coniferous forests added humus and thickened he topsoil.  When the next interstadial began (~15,000 BP) the climate warmed, precipitation increased, CO2 levels increased, and oaks and other broadleafed trees expanded from their refuges along waterways and once again colonized their old territory.  Jack pine is the most shade intolerant boreal species and was the first to be completely replaced, retreating to the north where it was able to take advantage of newly deglaciated sandy soils.  Next, red pine retreated, mostly toward New England, though relic populations remain in West Virginia.  Of the boreal species of pine, white pine was the least shade intolerant, so it still persists in north Georgia, though it’s much less common than it was during the Ice Age.

Young mixed boreal and hardwood forest.  At the beginning of interstadials when climate became wetter and warmer, oaks and other hardwoods rapidly displaced boreal conifers in the Georgia mountains and piedmont, shading the pines out.  These climate phases probably fostered the greatest variety of wildlife because northern species of plants and animals would still be present but southern species would begin colonizing the new habitat.

The greatest diversity of wildlife likely occurred during transitions from stadial to interstadial and vice-versa.  Environments in transition harbored a greater variety of habitats that animals and plants of northern and southern affinities would have found favorable.  A study of forest succession in the Georgia piedmont found that bird species abundance peaked at the stage when oaks began replacing pines.

There’s no evidence that northern species of pines ever extended their range into south Georgia.  Central Georgia was probably a transition zone where northern species of pines mixed with southern species of pine in environments that have no modern analog.  Shortleaf pine, the southern pine best adapted to cooler weather, was probably the most common pine species, though some northern pines ranged into the piedmont.  But much of south Georgia became brush, grassy deserts during stadials and much of the topsoil there blew away.  Eolian sand dunes rolled across the landscape, and the wind scooped out depressions and created Carolina Bays–a subject for a future blog entry.

Sagponds Contain a Partial Pollen Record of Ice Age Vegetation in Northwest Georgia

February 2, 2012

In the southern Appalachian mountains when groundwater dissolves underlying limestone the ground slumps to a granite bottom, creating an interesting environment known as a sagpond.  These differ from sagponds located in California which are formed from strike-slip faults.  Georgia sagponds form from the same geological principle that creates limesink lakes in Florida.  Dr. Charles Wharton counted as many as 96 sagponds per square mile in Bartow County.  They range in size from a few feet across to several acres.  Some go seasonally dry; others retain water year round.  Scientists recognize 4 types of sagponds.  Dry sagponds drain within an hour after rain stops.  Young sagponds, where the ground hasn’t finished slumping, hold water during winter and spring.  Mature sagponds are partially filled with colluvial silt and retain water year round.  Extinct sagponds have been completely filled with silt but still might be moist enough to support a marsh.

Topographical map of Green Pond.  Sagponds often form on mountains and provide wetland habitats in otherwise dry upland environments.

These low wet areas dotting the otherwise dry upland ridge and valley region host disjunct populations of at least 49 species of plants that are normally found on the coastal plain, including the evergreen laurel oak, gallberry (a type of holly), fetterbush, rock rose,  joint grass, panic grass, beaked rush, and many others.  Common aquatic plants found in sagponds are tupelo, buttonbush, red maple, and sedges.  Buttonbush and tupelo tend to grow in the middle of a sagpond; grass and sedge grow on the edges; than there is a heath zone ringed by a lowland woods consisting of loblolly pine, laurel oak, and red maple.

Page from the book Natural Environments of Georgia with a photo of a dry sagpond in Bartow County.

Photo by Alan Cressler of a sagpond on Keel Mountain in Madison County, Alabama.  I couldn’t find any photos on the web of sagponds in Georgia, though there are supposed to be a lot of them.

Dr. Wharton reports that Bloody Pond in Chickamauga Battlefield Park has a large stand of willow oaks.  (While researching this topic, I discovered that there are at least 2 other Civil War era battlefields with areas known as “Bloody Pond.”)

Scientists looking for ancient pollen and Pleistocene-aged plant macrofossils have excavated and cored several sagponds–Bob Black Pond, Quicksand Pond, Green Pond, Pigeon Mountain Marsh, and Lookout Mountain Marsh.  The pollen record from all these sites combined cover a timespan of between ~34,000 Bp-~10,000 BP in calender years.  Some of the studies date to before scientists realized carbon-dating gave dates too young when compared to tree rings.  The data I give in this discussion mention dates I’ve adjusted.  They’re just rough estimates based on the inaccurate dates from the early studies.

Pollen from Green Pond, believed to date to the Farmdalian Interstadial, suggests an environment in northwest Georgia consisting of dry oak and hickory woodlands with prairie openings.  Dr. W. A. Watts (of Penn State but now retired) conducted this study in 1973 and gave carbon dates of 29,630 BP- 25,000 BP which should be adjusted to about 34 ka BP-30 ka BP.  Pine pollen was scarce.  ~28,000 years ago pine and spruce pollen began to increase, indicating an abrupt change to a cooler drier climate.  Surprisingly, pond cypress was locally present.  This shows that individual plant species ranges didn’t always change in predictable patterns.  Pond cypress is absent in this region today, despite a warmer climate.  Shortly after this date, the pond filled with sediment and the pollen record ends for this site.  Conveniently, this is when the pollen record from sediment cored from Bob Black Pond, which Dr. Watts also studied in the early 1970’s, begins. 

Dr. Stephen Jackson of Wyoming University also studied Bob Black Pond over 20 years later.  He found boreal forest species dating to about 22,000 BP.  In addition to pollen he found plant macrofossils of white pine, red pine, jack pine, white spruce, Critchfield’s spruce, and paper birch.  Critchfield’s spruce is an extinct species thought to be adapted to temperate climates, and white pine still grows on the mountains of north Georgia, but the other 4 species no longer range much further south than Canada.

Jack pine present day range map.  This species lived as far south as northwest Georgia during the LGM.  Today, it lives no further south than northern Michigan.  Red pine is restricted to New England.  White spruce lives across Canada as does paper birch.

There’s no doubt the climate in north Georgia during the Last Glacial Maximum was cooler than that of today, but it wasn’t necessarily as cool as present day southern Canada, despite the presence of Canadian species of trees.  Scientists may have originally misinterpeted this data when they assumed the climate here was comparable to today’s southern Canada.  Pine and grass grow better in atmospheres with lower CO2 than broad-leafed trees.  So moderately lower temperatures combined with lower CO2 levels allowed northern species of conifers to compete better with oaks, maples, and other broad-leafed trees for space in the southern Appalachians.  It’s a good thing for the boreal species too because their present day range was completely under miles of ice then.

Fossil pollen from Pigeon Marsh in Walker County dates to approximately the LGM.  Jack and red pine pollen ranges from 25%-45%, oak pollen ranges from 30%-40%, and spruce pollen ranges from 1%-2%.  Hickory and chestnut were present but not abundant.   After the LGM, as the climate remained cool but became more moist, beech became the dominant tree here until the modern floral composition took over.

During the Pleistocene sagponds would’ve been prime foraging grounds for herds of hungry mastodons.  Sagponds supported the kinds of aquatic plants (especially buttonbush and pond cypress) that we know mastodons ate from analysis of their coprolites.  And indeed, fossil evidence of mastodons has been found in the ridge and valley region of Georgia and Tennessee.

References:

Watts, W. A.

“The Vegetation Record of a Mid-Wisconsinian Interstadial in Northwest Georgia”

Quaternary Research 3 (2) 1973

Wharton, Charles

The Natural Environments of Georgia

Georgia Department of Natural Resources 1980

If I could live during the Pleistocene (part two)

September 17, 2010

As I noted in last week’s blog entry, I don’t like roughing it.  If I’m going to live 41,000 years BP, I want to live in a nice sturdy house that would keep me safe from hungry bears, big cats, wolves, and rough weather.  I’d build a big adobe brick house with a wall around ten acres behind it where I could have a garden, fruit orchard, grain fields, and room to raise livestock such as milk cows, chickens, ducks and geese.

If I could live 41,000 years BP, I’d reside in an adobe house.  Adobe bricks are simple to make, only requiring mud, grass or sand, and sun.

My adobe house would have double thick walls, and raised windows with bars in front of them to prevent beasts from breaking into my abode and making a meal of me.  (For more about adobe houses see this link–     http://desertphile.org/adobe/adobe.htm)

In front I would have a raised platform or balcony for wildlife viewing, and on occasion to provide a place for hunting when I need meat.  Most of my home would be one story, but I’d have a tower room, built not unlike a lighthouse, which would afford a panoramic view of the surrounding landscape.  To improve the view, I’d clear a circle of land around my dwelling which would also serve as a firebreak.  My water supply would come from a well.  A dry toilet, or clivis multrum, would take care of my waste.  

Woodstoves would keep me warm in the winter, but I don’t think I’d need an air conditioner because this is the Ice Age, and summers are comfortable.  Solar units, and a generator, using wood alcohol that I would manufacture,  provide my electricity.  Of course, I’d have all necessary machines–bulldozers, bushhogs, trucks, boats, etc.  All engines would be modified to run on wood alcohol.

My Pleistocene adobe house is located in what’s now Elbert County on a hill one mile north of the Broad River and two miles west of the Savannah River.  In my opinion the Georgia piedmont (at least in the still rural areas) is the prettiest region of the state.  I even like it better than the north Georgia mountains.  I’d locate my home relatively close to a river for the easy source of protein–fish, turtles, freshwater mussels, and crayfish.  It would be necessary for me to maintain a dirt road between my house and the river.

I can take an educated guess as to what kinds of plants and animals I would encounter around my house.  There are only two Pleistocene-aged fossil sites in central Georgia (Nodoroc and Little Kettle Creek), though there are many more to the north and south.

Nodoroc is a bog that formerly was a mud volcano, last erupting in 1810 with a massive release of carbon dioxide.  These mysterious types of eruptions have also occurred in African lakes within the last few decades.  Nodoroc is a Creek Indian word meaning gateway to hell because the Indians used to execute criminals and toss them in this bog.

Scientists found plant macrofossils and pollen here, dating to 28,000 years BP, during a brief weak interstadial just before the Last Glacial Maximum.  The forest around the site consisted of an interesting mix of northern and southern species of pine as well as oak.  Northern species of pine such as white, red, and jack tend to have smaller grains of pollen, while southern species, such as shortleaf, tend to have larger grains.  Both size variations were found here, though it’s not possible to identify exact species, based on pollen.  But some plant macrofossils, though not in good enough condition for certain identification, compared favorably to red and/or jack pine; others compared favorably to shortleaf pine.  Because both northern and  southern species of pine occurred here then, the climate must have had mild summers and mild winters

Current range map of the red pine (Pinus resinosa).  Most of where it currently ranges was under glacial ice during the Ice Age, so it must have occurred south of this area then.  I propose that northern species of pine such as red and jack (Pinus banksiana) spread throughout the upper south following cold arid climate cycles when river beds dried out and wind blew the sand into large eolian sand dunes.  Scrub oak and grass initially colonized these dunes, but when precipitation increased as an interstadial began, lightning-induced fires burned the scrub oaks forests and grasslands, allowing fire-adapted pines to colonize these areas.  Eventually, as the climate continued to get warmer and wetter, hardwood trees outcompeted and replaced these shade-intolerant species.  Insterstadials never lasted long enough for hardwood forests to completely outcompete northern pines–a return to cold arid conditions would’ve probably killed many deciduous trees, allowing pine to regain territory.  But the current interglacial we live in now has lasted long enough for broad-leafed forests to shade out red and jack pines in the upper south, except for isolated relic populations of the former in small areas of West Virginia.

Hickory, spruce, and fir pollen were also common; chestnut, beech, and maple were present in low numbers.  The understory consisted of alder, blueberry and/or rhodadendron, and hazlenut.  Enough ragweed, grass, and sedge pollen was present to suggest the presence of large meadows or small prairies, making up to 25% of the landscape.

Little Kettle Creek is the only Pleistocene-age animal fossil site in the entire piedmont region of southeastern North America.  Teeth and bones of mammoth, mastodon, bison, white tail deer, (cf) southern bog lemmings, (cf) red backed voles, and catfish were recovered here.  The two rodents no longer range farther south than Kentucky, again indicating cooler summers for central Georgia during the Ice Age.  Mammoth and bison grazed the meadows;  mastodon and deer foraged the forest edge and streamside woodlands.  Growth rings on the catfish bones are evidence of colder winters than those of today because modern day catfish in warm southern states don’t have dormant growth cycles like fish found in northern states.

Fossil sites to the north and south of the piedmont have more species and most of them probably also lived in what’s now central Georgia as well.  Around my Pleistocene house I would also expect to see Jefferson’s ground sloth, elk, horses, tapirs, llamas, peccaries, dire wolves, jaguars, saber-tooths, bears of at least once species, giant beavers, and many smaller species of extant mammals that no longer occur in state but still live to the north and west.  Examples of interesting small species I’d expect to see are the hognosed skunk, red squirrels, and the extinct noble chipmunk.  I’d also expect to see a much greater variety of birds than I’d see today in an unspoiled wilderness devoid of human habitat destruction and pesticide use.  I’d be on the lookout for northern ravens, magpies, prairie chickens, upland sandpipers, terratorns, California Condors, and extinct species of vultures and eagles.  Birds that are rare or extinct today but were common then include bald eagles, ivory-billed woodpeckers, Carolina parakeets, passenger pigeons, swans, and cranes. 

That abundance of wildlife is the reason I really wish I could move into my Pleistocene home.

One final thought for today: This Ice Age ecosystem I describe was the norm.  Today’s interglacial ecosystem is an aberration because Ice Ages last ten times longer than interglacials.