Posts Tagged ‘3-toed horses’

The Gray Fossil Site in Washington County, Tennessee

December 5, 2012

In 2000 workers widening route #75 in northeastern Tennessee discovered fossiliferous black soil dissimilar to the red clay dirt commonly found in most of the surrounding countryside.  The highway engineer called in the scientists who soon realized the site was an astonishing treasure of Miocene-age plant and animal fossils.  From the great amount of  data they began uncovering, they knew they could theoretically reconstruct what the entire ecosystem was like then.  The state of Tennessee, home of the infamous and embarrassing Scopes Monkey Trial, took the commendable action of rerouting the highway.  Moreover, in conjunction with East Tennessee State University they built a museum directly adjacent to the site, and now ETSU hosts one of the top paleontology programs in the nation.

Aerial View

Aerial view of the Gray Fossil Site in Tennessee.  I almost visited this museum when I went on my trip to Roan Mountain Bald a few years ago, but I decided not to drag my wife and daughter to yet another museum.

The Gray Fossil Site consists of 2 and probably more filled-in sinkholes.  One sinkhole dates to the late Miocene/early Pliocene (about 7 million-4.5 million years ago), while the other dates to the late Paleocene/early Eocene (about 55 million years ago).  The sinkhole with the Miocene age vertebrate and plant fossils is 220 meters long by 100 meters wide by 36 meters deep.  In ancient times it was a deep but small pond that formed when rainwater caused underlying limestone bedrock to dissolve away.  The structure of the deep sinkhole meant a lot of plant material accumulated on the bottom, creating a poorly oxygenated aquatic environment that prevented the vertebrate bones and plants from decomposing.  Later, the pond filled with sediment, preserving the remains until their discovery a little over a decade ago.  To date only 2% of the site has been excavated, yet over 15,000 fossils have been found here.

There is no radiometrically datable rock at the site, so scientists were forced to use index fossils to estimate the age of the site, explaining the lack of precise dating.  Scientists know the hippo-like rhino (Teleoceras) became extinct about 4.5 million years ago because no specimens of this species have been found at sites younger than that.  A species of short-faced bear (Plionarctos) is unknown from sites older than 7 million years.  These other sites do have radiometrically datable rock.  Thus, that’s the reason for the bracketed dates of age estimation for this site.

The abundance of sticks, acorns, nuts, leaves, pollen, ostracods, snails, and charcoal found at the Gray Fossil Site makes scientists about as excited as the rich assortment of vertebrate bones.  From all this data they can reconstruct a relatively accurate picture of the entire environment here.  One scientist even studied the varves and sediment accumulation patterns to estimate what the climate was like during the late Miocene.  The North American continent during the Miocene, though recognizable to modern geography students, was quite different than that of today.  Most importantly, the Isthmus of Panama had yet to rise above sea level and North and South America were not connected by a landbridge.  Moreover, much of the Rocky Mountains had yet to form.  An important ocean current existed between the 2 continents, and it played a major role in the climate.  The modern Gulf Stream current that keeps the North Atlantic waters warm didn’t exist yet.  Ironically, the Atlantic Ocean was cooler than it is today, but the continents were warmer.  This dramatic difference in temperature between land and ocean caused frequent monsoons during the wet season, but evidence from sediment accumulation suggest the wet monsoon season alternated with a dry, drought-like summer.  However, the climate was stable for millions of years–the continents had yet to drift into the positions that caused cyclical Ice Ages to occur.  Most of North America was tropical or subtropical and frosts at the Gray Fossil Site then were rare to nonexistent.  A temperate forest zone with winter frosts was restricted to northern Canada.

Ocean currents were different before the Isthmus of Panama rose above sea level.  Continental drift eventually joined North and South America, changing worldwide oceanic currents.  This in addition to the collision of India with Asia causing the rise of the Himalayas; and the North American subduction events forming some of the Rocky Mountains contributed to the beginning of Ice Ages.

The Miocene forests formed a continous somewhat homogenous environment all the way across North America, Beringia, and Asia.  Many of the species in Asia and North America were similar and closely related, if not the same.  Palynological studies of the sediment at the Gray Fossil Site show that pine, oak, and hickory made up 90% of the pollen, not unlike that of today’s environment.  Other common plants included elm, sweetgum, fir, hemlock,  walnut, asters (flowers such as sunflowers), and chenopods (spinach, beets, lambquarters, quinoa, etc.).  Macrosfossils of grapes, moonseed, and bamboo show these species were abundant, though the pollen from these plants doesn’t even show up in the pollen analysis.  Many of the species of pine and oak were probably different from extant species.  But the Tennessee State website about the site has a slideshow of Gray site fossils including leaf impressions, and I recognized post oak and southern red oak–2 common species still found in the region.  However, they may have been adapted to different climatic conditions, and if a viable acorn was planted from one of these trees (not likely possible of course), it might struggle to survive in the modern environment because these species have evolved since then to survive in a summer hot/winter cold climate quite different from the Miocene wet/dry seasons with no subfreezing temperatures.

Abundant charcoal and the presence of fossil giant bamboo cane (a fire dependent species) from the site suggests frequent forest fires.  Along with windstorms, this created an environment consisting of a mix of closed and open forests around the sinkhole pond.

Another sinkhole at the site yields botanical evidence of an early Eocene environment.  The area then was dominated by pine, beech, walnut, and aster; though most, if not all, were completely extinct species.

The largest species of mammal to fall into the sinkhole was the gompothere–an elephant-like animal more closely related to the mastodon than the mammoth.  A nearly complete skeleton of a Teleoceras, the hippo-like rhino, was found here.  This very likely was the second largest mammal living in the environment here.

Teleoceras, the hippo-like rhino.  A nearly complete skeleton was found at the Gray Fossil Site.  It was an aquatic species.

A 14 foot tall camel browsed in the Miocene forests.  This giraffe-like animal is known as Megatylopus, and it must have been able to reach leaves and twigs that rhinos, horses, and tapirs couldn’t reach.

Portrait of a Megatylopus drawn by Debbie Kaspari.  What a spectacular beast.

At least 1 species of giant ground sloth occurred here.  Ground sloths originated in South America but found their way to North America millions of years before the Isthmus of Panama rose above sea level.  Scientists think they arrived via a combination of swimming and island-hopping.

By far the most common large animal found at the site is the dwarf tapir (Tapirus polkensis).  Scientists have excavated over 80, a total that surpasses the amount of fossil tapir material found at any other site in the world.  The dwarf tapir was closely related to Baird’s tapir, a species that lives in Central America today.

Photo of Baird’s tapir and young.  This is a Central American species of tapir and the closest living relative to the extinct dwarf tapir (Tapirus polkensis) that was the most common large mammal living in northeastern Tennessee about 5 million years ago.

Three-toed horses were also common, occupying a niche that whitetail deer do today.  They were slenderly built, more like a deer than a horse.  A species of peccary closely related to the modern collared peccary was a component of the fauna.  It was evidentally not related to the long-nosed and flat-headed peccaries–the species that were common in North America during the Pleistocene.  Collared peccaries also expanded their range during warm interglacials of the Pleistocene, but were absent from much of this territory during stadials.

I was surprised to discover that deer were not on the list of species found here. This forested habitat would have been ideal for them.  I contacted a paleontologist who works at the site and noted the lack of deer fossils.  He told me they had discovered a few deer fossils, but they were rare and undescribed in the scientific literature.  He referred me to another paleontologist who would know more about it, but that guy informed me no deer fossils had been found…yet.  So, it’s unclear whether deer fossils are among those found at the site.  Maybe, they don’t want to officially announce the find until someone gets credit for the possible discovery of a new species.  In any case, during the Miocene deer were first starting to evolve.  Later, they spread throughout the northern hemisphere and ecologically replaced 3-toed horses.

Only 2 species of large carnivores have been found at the site.  A tooth belonging to a Machairodus is evidence a fanged cat ancestral to Smilodon and Dinobastis (the scimitar-tooth) hunted here then.  Borophagus, the bone-eating dog, and hyenas would have been 2 additional large carnivores present during the Miocene, but so far, no specimens of them have been found.  The other large carnivore that we know for sure lived here was Plionarctos–a species of short-faced bear that later diverged into the Pleistocene-aged vegetarian Tremarctos floridanus and the carnivorous Arctodus pristinus which then evolved into Arctodus simus.

Two new species of small carnivores were discovered here. I wrote in my blog entry last week that red pandas were discovered here.  I forgot to mention that this species was 4 times larger than modern day red pandas, making them about a 50 pound animal.  A new species of woodland badger (Arctomeles dimolodontus) was found here as well.  It was more closely related to European badgers than to the American species of badger adapted to live in prairie environments.

Dipoides (a species of beaver), swam in the sinkhole pond.  It was closely related to the Pleistocene giant beaver (Casteroides ohioensis), and it did build dams like modern beavers.

The only extinct species of reptile found among the fossils was a type of alligator that appears to have been a transitional species between Olsen’s alligator (Alligator olseni) and the modern American alligator (Alligator mississippiensis).  It was smaller than a modern alligator, growing to less than 8 feet long.  It’s presence is evidence of a relatively frost free climate.  Two species of alligator live in the world today–1 in southeastern North America and the other in China.  Olsen’s alligator is likely the ancestor to both and formerly ranged over an expanded continous range on both continents before climatic conditions deteriorated.  Other species of reptiles and amphibians found at the site are species that are still extant, demonstrating a slow rate of evolution among turtles and frogs.

Skulls of Olsen’s alligator.  This species was ancestral to both American and Chinese species of alligators.  It’ s range was continous over both North America and Asia.

References:

Ochoa, Diana; et. al.

“Palynology of Neogene Sediments at the Gray Fossil Site, TN., USA: Floristic Implications”

Review of Paleobotany and Palynology

Shunk, Aaron

“Late Tertiary Paleoclimate stratigraphy at the Gray Fossil Site (eastern Tennessee) and the Pipe Creek Sinkhole (northcentral Indiana)”

Dissertation

Zobaa, Mohamed; et. al.

“Palynology and Palynofacies Analysis of the Gray Fossil Site, eastern Tennessee: Their role on Understanding the basin-fill history”

Paleogeography, Paleoclimatalogy, Paleoecology 308 (201)